The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1.

نویسندگان

  • Helen Walden
  • Michael S Podgorski
  • Danny T Huang
  • David W Miller
  • Rebecca J Howard
  • Daniel L Minor
  • James M Holton
  • Brenda A Schulman
چکیده

E1 enzymes initiate ubiquitin-like protein (ubl) transfer cascades by catalyzing adenylation of the ubl's C terminus. An E1's selectivity for its cognate ubl is essential because the E1 subsequently coordinates the ubl with its correct downstream pathway. We report here the structure of the 120 kDa quaternary complex between human APPBP1-UBA3, a heterodimeric E1, its ubl NEDD8, and ATP. The E1 selectively recruits NEDD8 through a bipartite interface, involving a domain common to all ubl activating enzymes including bacterial ancestors, and also eukaryotic E1-specific sequences. By modeling ubiquitin into the NEDD8 binding site and performing mutational analysis, we identify a single conserved arginine in APPBP1-UBA3 that acts as a selectivity gate, preventing misactivation of ubiquitin by NEDD8's E1. NEDD8 residues that interact with E1 correspond to residues in ubiquitin important for binding the proteasome and other ubiquitin-interacting proteins, suggesting that the conjugation and recognition machineries have coevolved for each specific ubl.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Dissection of a Gating Mechanism Preventing Misactivation of Ubiquitin by NEDD8’s E1

Post-translational covalent modification by ubiquitin and ubiquitin-like proteins (UBLs) is a major eukaryotic mechanism for regulating protein function. In general, each UBL has its own E1 that serves as the entry point for a cascade. The E1 first binds the UBL and catalyzes adenylation of the UBL's C-terminus, prior to promoting UBL transfer to a downstream E2. Ubiquitin's Arg 72, which corre...

متن کامل

A novel protein modification pathway related to the ubiquitin system.

Ubiquitin conjugation is known to target protein substrates primarily to degradation by the proteasome or via the endocytic route. Here we describe a novel protein modification pathway in yeast which mediates the conjugation of RUB1, a ubiquitin-like protein displaying 53% amino acid identity to ubiquitin. We show that RUB1 conjugation requires at least three proteins in vivo. ULA1 and UBA3 are...

متن کامل

NEDD8 overexpression results in neddylation of ubiquitin substrates by the ubiquitin pathway.

Ubiquitin and ubiquitin-like proteins use unique E1, E2, and E3 enzymes for conjugation to their substrates. We and others have recently reported that increases in the relative concentration of the ubiquitin-like protein NEDD8 over ubiquitin lead to activation of NEDD8 by the ubiquitin E1 enzyme. We now show that this results in erroneous conjugation of NEDD8 to ubiquitin substrates, such as p5...

متن کامل

The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice

NEDD8/Rub1 is a ubiquitin (Ub)-like molecule that covalently ligates to target proteins through an enzymatic cascade analogous to ubiquitylation. This modifier is known to target all cullin (Cul) family proteins. The latter are essential components of Skp1/Cul-1/F-box protein (SCF)-like Ub ligase complexes, which play critical roles in Ub-mediated proteolysis. To determine the role of the NEDD8...

متن کامل

E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification.

Ubiquitin and ubiquitin-like proteins (UBLs) are directed to targets by cascades of E1, E2, and E3 enzymes. The largest ubiquitin E3 subclass consists of cullin-RING ligases (CRLs), which contain one each of several cullins (CUL1, -2, -3, -4, or -5) and RING proteins (RBX1 or -2). CRLs are activated by ligation of the UBL NEDD8 to a conserved cullin lysine. How is cullin NEDD8ylation specificit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2003